Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Med (Lausanne) ; 10: 1118024, 2023.
Article in English | MEDLINE | ID: covidwho-2270837

ABSTRACT

Objectives: Our objective was to examine coronary endothelial and myocardial programming in patients with severe COVID-19 utilizing digital spatial transcriptomics. Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has well-established links to thrombotic and cardiovascular events. Endothelial cell infection was initially proposed to initiate vascular events; however, this paradigm has sparked growing controversy. The significance of myocardial infection also remains unclear. Methods: Autopsy-derived cardiac tissue from control (n = 4) and COVID-19 (n = 8) patients underwent spatial transcriptomic profiling to assess differential expression patterns in myocardial and coronary vascular tissue. Our approach enabled transcriptional profiling in situ with preserved anatomy and unaltered local SARS-CoV-2 expression. In so doing, we examined the paracrine effect of SARS-CoV-2 infection in cardiac tissue. Results: We observed heterogeneous myocardial infection that tended to colocalize with CD31 positive cells within coronary capillaries. Despite these differences, COVID-19 patients displayed a uniform and unique myocardial transcriptional profile independent of local viral burden. Segmentation of tissues directly infected with SARS-CoV-2 showed unique, pro-inflammatory expression profiles including upregulated mediators of viral antigen presentation and immune regulation. Infected cell types appeared to primarily be capillary endothelial cells as differentially expressed genes included endothelial cell markers. However, there was limited differential expression within the endothelium of larger coronary vessels. Conclusion: Our results highlight altered myocardial programming during severe COVID-19 that may in part be associated with capillary endothelial cells. However, similar patterns were not observed in larger vessels, diminishing endotheliitis, and endothelial activation as key drivers of cardiovascular events during COVID-19.

2.
Immunity, inflammation and disease ; 10(6), 2022.
Article in English | EuropePMC | ID: covidwho-1863932

ABSTRACT

Introduction The severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pandemic revealed a worldwide lack of effective molecular surveillance networks at local, state, and national levels, which are essential to identify, monitor, and limit viral community spread. SARS‐CoV‐2 variants of concern (VOCs) such as Alpha and Omicron, which show increased transmissibility and immune evasion, rapidly became dominant VOCs worldwide. Our objective was to develop an evidenced‐based genomic surveillance algorithm, combining reverse transcription polymerase chain reaction (RT‐PCR) and sequencing technologies to quickly identify highly contagious VOCs, before cases accumulate exponentially. Methods Deidentified data were obtained from 508,969 patients tested for coronavirus disease 2019 (COVID‐19) with the TaqPath COVID‐19 RT‐PCR Combo Kit (ThermoFisher) in four CLIA‐certified clinical laboratories in Puerto Rico (n = 86,639) and in three CLIA‐certified clinical laboratories in the United States (n = 422,330). Results TaqPath data revealed a frequency of S Gene Target Failure (SGTF) > 47% for the last week of March 2021 in both, Puerto Rico and US laboratories. The monthly frequency of SGTF in Puerto Rico steadily increased exponentially from 4% in November 2020 to 47% in March 2021. The weekly SGTF rate in US samples was high (>8%) from late December to early January and then also increased exponentially through April (48%). The exponential increase in SGFT prevalence in Puerto Rico was concurrent with a sharp increase in VOCs among all SARS‐CoV‐2 sequences from Puerto Rico uploaded to Global Influenza Surveillance and Response System (GISAID) (n = 461). Alpha variant frequency increased from <1% in the last week of January 2021 to 51.5% of viral sequences from Puerto Rico collected in the last week of March 2021. Conclusions According to the proposed evidence‐based algorithm, approximately 50% of all SGTF patients should be managed with VOCs self‐quarantine and contact tracing protocols, while WGS confirms their lineage in genomic surveillance laboratories. Our results suggest this workflow is useful for tracking VOCs with SGTF. The evidence‐based Molecular Epidemiology and Genomic Surveillance algorithm, developed in this study to quickly identify emerging Variants of Concern (VOCs), is a valuable tool for identifying individual carriers of highly infectious variants with the S Gene Target Failure (SGTF) feature, such as Alpha and Omicron, who can then be effectively triaged for isolation, contact tracing, and treatment purposes.

3.
Immun Inflamm Dis ; 10(6): e634, 2022 06.
Article in English | MEDLINE | ID: covidwho-1850065

ABSTRACT

INTRODUCTION: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic revealed a worldwide lack of effective molecular surveillance networks at local, state, and national levels, which are essential to identify, monitor, and limit viral community spread. SARS-CoV-2 variants of concern (VOCs) such as Alpha and Omicron, which show increased transmissibility and immune evasion, rapidly became dominant VOCs worldwide. Our objective was to develop an evidenced-based genomic surveillance algorithm, combining reverse transcription polymerase chain reaction (RT-PCR) and sequencing technologies to quickly identify highly contagious VOCs, before cases accumulate exponentially. METHODS: Deidentified data were obtained from 508,969 patients tested for coronavirus disease 2019 (COVID-19) with the TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) in four CLIA-certified clinical laboratories in Puerto Rico (n = 86,639) and in three CLIA-certified clinical laboratories in the United States (n = 422,330). RESULTS: TaqPath data revealed a frequency of S Gene Target Failure (SGTF) > 47% for the last week of March 2021 in both, Puerto Rico and US laboratories. The monthly frequency of SGTF in Puerto Rico steadily increased exponentially from 4% in November 2020 to 47% in March 2021. The weekly SGTF rate in US samples was high (>8%) from late December to early January and then also increased exponentially through April (48%). The exponential increase in SGFT prevalence in Puerto Rico was concurrent with a sharp increase in VOCs among all SARS-CoV-2 sequences from Puerto Rico uploaded to Global Influenza Surveillance and Response System (GISAID) (n = 461). Alpha variant frequency increased from <1% in the last week of January 2021 to 51.5% of viral sequences from Puerto Rico collected in the last week of March 2021. CONCLUSIONS: According to the proposed evidence-based algorithm, approximately 50% of all SGTF patients should be managed with VOCs self-quarantine and contact tracing protocols, while WGS confirms their lineage in genomic surveillance laboratories. Our results suggest this workflow is useful for tracking VOCs with SGTF.


Subject(s)
COVID-19 , SARS-CoV-2 , Base Sequence , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Precision Medicine , SARS-CoV-2/genetics , United States/epidemiology
4.
JCI Insight ; 6(7)2021 04 08.
Article in English | MEDLINE | ID: covidwho-1383578

ABSTRACT

Proline-glycine-proline (PGP) and its acetylated form (Ac-PGP) are neutrophil chemoattractants generated by collagen degradation, and they have been shown to play a role in chronic inflammatory disease. However, the mechanism for matrikine regulation in acute inflammation has not been well established. Here, we show that these peptides are actively transported from the lung by the oligopeptide transporter, PEPT2. Following intratracheal instillation of Ac-PGP in a mouse model, there was a rapid decline in concentration of the labeled peptide in the bronchoalveolar lavage (BAL) over time and redistribution to extrapulmonary sites. In vitro knockdown of the PEPT2 transporter in airway epithelia or use of a competitive inhibitor of PEPT2, cefadroxil, significantly reduced uptake of Ac-PGP. Animals that received intratracheal Ac-PGP plus cefadroxil had higher levels of Ac-PGP in BAL and lung tissue. Utilizing an acute LPS-induced lung injury model, we demonstrate that PEPT2 blockade enhanced pulmonary Ac-PGP levels and lung inflammation. We further validated this effect using clinical samples from patients with acute lung injury in coculture with airway epithelia. This is the first study to our knowledge to determine the in vitro and in vivo significance of active matrikine transport as a mechanism of modulating acute inflammation and to demonstrate that it may serve as a potential therapeutic target.


Subject(s)
Acute Lung Injury/immunology , COVID-19 , Cefadroxil/pharmacology , Inflammation/metabolism , Oligopeptides , Proline/analogs & derivatives , Symporters , Animals , Anti-Bacterial Agents/pharmacology , Biological Transport, Active/immunology , COVID-19/immunology , COVID-19/metabolism , Cells, Cultured , Chemotactic Factors/immunology , Chemotactic Factors/pharmacology , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Extracellular Matrix , Extracellular Matrix Proteins/metabolism , Humans , Mice , Oligopeptides/immunology , Oligopeptides/pharmacology , Proline/immunology , Proline/pharmacology , Symporters/antagonists & inhibitors , Symporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL